माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है
$\left\{ {z:\left| z \right| = 1} \right\}$
$\left\{ {z:z = \overline z } \right\}$
$\left\{ {z:z \ne 1} \right\}$
$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$
यदि $\frac{{z - i}}{{z + i}}(z \ne - i)$ एक पूर्णत: अधिकल्पित संख्या है, तब $z.\bar z$ बराबर है
$\mathrm{a} \in \mathrm{C}$ के लिए, माना
$\mathrm{A}=\{\mathrm{z} \in \mathrm{C}: \operatorname{Re}(\mathrm{a}+\overline{\mathrm{z}})>\operatorname{Im}(\overline{\mathrm{a}}+\mathrm{z})\}$ तथा
$B=\{z \in C: \operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)\}$ हैं। तो दो कथनों :
$(S1)$ : यदि $\operatorname{Re}(\mathrm{A}), \operatorname{Im}(\mathrm{A})>0$ है, तो सभी वास्तविक संख्याएँ $A$ में हैं
$(S2)$ : यदि $\operatorname{Re}(\mathrm{A}), \operatorname{Im}(\mathrm{A})<0$ हैं, तो सभी वास्तविक संख्याएँ $\mathrm{B}$ में हैं
इनमें से
यदि $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, तब ${z_1}$तथा ${z_2}$ के कोणांकों में अन्तर है
माना कि $z$ एक शून्येतर काल्पनिक भाग (non-zero imaginary part) वाली सम्मिश्र संख्या (complex number) है। यदि $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ एक वास्तविक संख्या (real number) है, तब $|z|^2$ का मान. . . . .है।
यदि $z$ एक सम्मिश्र संख्या हो, तो $(\overline {{z^{ - 1}}} )(\overline z ) = $